Complexity Theory

Homework Sheet 4 Hand in before the lecture of Tuesday 7 Mar. Preferably by email to bannink@cwi.nl

28 February 2017

Exercise 1. Show that $\mathbf{NL} \subseteq \mathbf{P}$.

Hint: Consider the configuration graph of the nondeterministic machine.

Exercise 2. In this exercise, all graphs are directed graphs. We define the following decision problem:

DEADEND = { $\langle G, s, t \rangle$ | The graph G contains a vertex v, reachable from vertex s, such that t is not reachable from v.}

Show that this problem is contained in **NL**.

Exercise 3. Define the complexity class

 $\mathbf{DP} = \{ A \cap B \mid A \in \mathbf{NP}, B \in \mathbf{coNP} \}.$

We say an undirected graph G has a *clique* of size k if there exists a subset S of k vertices such that all pairs of vertices in S have an edge between them.

ECLIQUE = { $\langle G, k \rangle$ | the largest clique in the graph G has exactly k vertices}.

- (a) Show that ECLIQUE $\in \Sigma_2^p \cap \Pi_2^p$.
- (b) Show that $ECLIQUE \in DP$.
- (c) Show that if $\mathbf{DP} \subseteq \mathbf{NP}$, then the polynomial-time hierarchy collapses.

Exercise 4. Define \mathbf{P}/log as the class of sets A for which there is an advice function $\alpha : \mathbb{N} \to \{0, 1\}^{O(\log n)}$ and a polytime machine M such that for any string x of length at most n,

$$x \in A \iff M(x, \alpha(n)) = 1.$$

- (a) Show that if SAT is in \mathbf{P}/log , then $\mathbf{P} = \mathbf{NP}$.
- (b) Bonus Show that $\mathbf{P} \subsetneq \mathbf{P}/\log$; i.e. show that there is a decidable set in \mathbf{P}/\log that is not in \mathbf{P} .