Exercise session 1

Definition 1. Let f, g be functions $\mathbb{N} \to \mathbb{R}$.

$$f \in \mathcal{O}(g)$$
 means $(\exists c, n_0 \in \mathbb{N})(\forall n \ge n_0)(|f(n)| \le c|g(n)|)$ (\le)

$$f \in o(g) \quad \text{means} \quad (\forall \varepsilon > 0) (\exists n_0 \in \mathbb{N}) (\forall n \ge n_0) (|f(n)| < \varepsilon |g(n)|) \quad (<)$$

or equivalently
$$\lim_{n \to \infty} \frac{|f(n)|}{|g(n)|} = 0$$

$$f \in \Omega(g)$$
 means $g \in \mathcal{O}(f)$ (\geq)

$$f \in \omega(g)$$
 means $g \in o(f)$ (>)

$$f \in \Theta(g)$$
 means $f \in \mathcal{O}(g) \cap \Omega(g)$ (=)

Remark 1. It is very common to write $f = \mathcal{O}(g)$ instead of $f \in \mathcal{O}(g)$. Note however that it is not true that $f = \mathcal{O}(g)$ and $h = \mathcal{O}(g)$ implies f = h.

Exercise 1.

- 1. Let $f(n) = pn^3 + qn^2 + rn + s$ for some $p, q, r, s \in \mathbb{R}$. Show $f(n) \in \mathcal{O}(n^3)$ and $f(n) \in o(n^4)$.
- 2. Show $\sin(n) \in \mathcal{O}(1)$ and $\sin(n) \notin o(1)$.
- 3. Show that $\mathcal{O}(f+g) = \mathcal{O}(\max(f,g))$ for non-negative functions f, g (i.e. $f(n) \ge 0$ and $g(n) \ge 0$ for all n), where f + g is the function $x \mapsto f(x) + g(x)$ and $\max(f,g)$ is the function $x \mapsto \max(f(x), g(x))$.
- 4. Show $n^{\log n} \in \mathcal{O}(2^n)$.

Solution.

1. (a) Let c = |p| + |q| + |r| + |s| and $n_0 = 1$, then for $n \ge n_0$ we have $|pn^3 + qn^2 + rn + s| \le |p|n^3 + |q|n^2 + |r|n + |s| \le c|n^3|$.

1. (b) We have

 $\lim_{n \to \infty} |pn^3 + qn^2 + rn + s|/n^4 \le \lim_{n \to \infty} (|p|n^3 + |q|n^2 + |r|n + |s|)/n^4 = \lim_{n \to \infty} |p|/n + |q|/n^2 + |r|/n^3 + |s|/n^4 = 0.$

2. (a) Since $0 \le |\sin(n)| \le 1$, taking c = 1 and $n_0 = 0$ works.

2. (b) The limit $\lim_{n\to\infty} |\sin(n)|$ does not converge.

3. (\subseteq) If $h \in \mathcal{O}(f+g)$ then $\exists c, n_0 \ \forall n > n_0$: $|h(n)| \leq c|(f+g)(n)| = c|f(n) + g(n)| \leq 2c|\max(f(n), g(n))|$. So by setting c' = 2c and $n'_0 = n_0$ we have $|h(n)| \leq c'|\max(f(n), g(n))|$ for $n \geq n'_0$ so $h \in \mathcal{O}(\max(f, g))$.

3. (\supseteq) If $h \in \mathcal{O}(\max(f,g))$ then $\exists c, n_0 \ \forall n > n_0 : |h(n)| \le c |\max(f,g)(n)| \le c |(f+g)(n)|$. So with the same c and n_0 we have $h \in \mathcal{O}(f+g)$.

4. First note that $(\log n)^2 \leq n$ when $n \geq 16$. Since 2^n is an increasing function (i.e. $2^a > 2^b$ if a > b) we have $n^{\log n} = 2^{(\log n)^2} \leq 2^n$ for $n \geq 16$. So choose c = 1 and $n_0 = 16$.

You are allowed to assume that when $n \to \infty$, n grows faster than any power of $\log n$.

To see why $(\log n)^2 \le n$ for $n \ge 16$, note that for n = 16 we have $(\log n)^2 = n$, and the derivative of $(\log n)^2$ is always smaller than the derivative of n for $n \ge 16$. So n grows faster and we have the required inequality.