Exercise session 1

Definition 1. Let f, g be functions $\mathbb{N} \rightarrow \mathbb{R}$.

$$
\begin{array}{lll}
f \in \mathcal{O}(g) & \text { means } & \left(\exists c, n_{0} \in \mathbb{N}\right)\left(\forall n \geq n_{0}\right)(|f(n)| \leq c|g(n)|) \\
f \in o(g) & \text { means } \quad(\forall \varepsilon>0)\left(\exists n_{0} \in \mathbb{N}\right)\left(\forall n \geq n_{0}\right)(|f(n)|<\varepsilon|g(n)|) \\
& \text { or equivalently } \quad \lim _{n \rightarrow \infty} \frac{|f(n)|}{|g(n)|}=0 \\
f \in \Omega(g) & \text { means } & g \in \mathcal{O}(f) \\
f \in \omega(g) & \text { means } & g \in o(f) \\
f \in \Theta(g) & \text { means } \quad f \in \mathcal{O}(g) \cap \Omega(g) \tag{=}
\end{array}
$$

Remark 1. It is very common to write $f=\mathcal{O}(g)$ instead of $f \in \mathcal{O}(g)$. Note however that it is not true that $f=\mathcal{O}(g)$ and $h=\mathcal{O}(g)$ implies $f=h$.

Exercise 1.

1. Let $f(n)=p n^{3}+q n^{2}+r n+s$ for some $p, q, r, s \in \mathbb{R}$.

Show $f(n) \in \mathcal{O}\left(n^{3}\right)$ and $f(n) \in o\left(n^{4}\right)$.
2. Show $\sin (n) \in \mathcal{O}(1)$ and $\sin (n) \notin o(1)$.
3. Show that $\mathcal{O}(f+g)=\mathcal{O}(\max (f, g))$ for non-negative functions f, g (i.e. $f(n) \geq 0$ and $g(n) \geq 0$ for all n), where $f+g$ is the function $x \mapsto f(x)+g(x)$ and $\max (f, g)$ is the function $x \mapsto \max (f(x), g(x))$.
4. Show $n^{\log n} \in \mathcal{O}\left(2^{n}\right)$.

Solution.

1. (a) Let $c=|p|+|q|+|r|+|s|$ and $n_{0}=1$, then for $n \geq n_{0}$ we have $\left|p n^{3}+q n^{2}+r n+s\right| \leq|p| n^{3}+|q| n^{2}+|r| n+|s| \leq c\left|n^{3}\right|$.
2. (b) We have
$\lim _{n \rightarrow \infty}\left|p n^{3}+q n^{2}+r n+s\right| / n^{4} \leq \lim _{n \rightarrow \infty}\left(|p| n^{3}+|q| n^{2}+|r| n+|s|\right) / n^{4}=$ $\lim _{n \rightarrow \infty}|p| / n+|q| / n^{2}+|r| / n^{3}+|s| / n^{4}=0$.
3. (a) Since $0 \leq|\sin (n)| \leq 1$, taking $c=1$ and $n_{0}=0$ works.
4. (b) The limit $\lim _{n \rightarrow \infty}|\sin (n)|$ does not converge.
5. (\subseteq) If $h \in \mathcal{O}(f+g)$ then $\exists c, n_{0} \forall n>n_{0}:|h(n)| \leq c|(f+g)(n)|=$ $c|f(n)+g(n)| \leq 2 c|\max (f(n), g(n))|$. So by setting $c^{\prime}=2 c$ and $n_{0}^{\prime}=n_{0}$ we have $|h(n)| \leq c^{\prime}|\max (f(n), g(n))|$ for $n \geq n_{0}^{\prime}$ so $h \in \mathcal{O}(\max (f, g))$.
6. (〇) If $h \in \mathcal{O}(\max (f, g))$ then $\exists c, n_{0} \forall n>n_{0}:|h(n)| \leq c|\max (f, g)(n)| \leq$ $c|(f+g)(n)|$. So with the same c and n_{0} we have $h \in \mathcal{O}(f+g)$.
7. First note that $(\log n)^{2} \leq n$ when $n \geq 16$. Since 2^{n} is an increasing function (i.e. $2^{a}>2^{b}$ if $a>b$) we have $n^{\log n}=2^{(\log n)^{2}} \leq 2^{n}$ for $n \geq 16$. So choose $c=1$ and $n_{0}=16$.
You are allowed to assume that when $n \rightarrow \infty, n$ grows faster than any power of $\log n$.
To see why $(\log n)^{2} \leq n$ for $n \geq 16$, note that for $n=16$ we have $(\log n)^{2}=n$, and the derivative of $(\log n)^{2}$ is always smaller than the derivative of n for $n \geq 16$. So n grows faster and we have the required inequality.
