Computational Complexity

Harry Buhrman (buhrman@cwi.nl) Tom Bannink (bannink@cwi.nl)

Algorithms & Complexity group QuSoft

Course requirements

- Computational Complexity: A Modern Approach by Arora & Barak (http://www.cs.princeton.edu/theory/complexity/)
- lectures (hoorcollege)
 - Tuesday 13:00-15:00, Thursday 13:00-15:00
- werkcollege:
 - Friday 9:00-11:00
 - http://turing-machine.nl/

- Computational complexity Approximation approximation for the second seco
- Compulsory: hand in exercises every week on Tuesday
- Final exam

Grade

- Hand in exercises before lecture on Tuesday the week after they were distributed
- Final grade exercises is average of obtained grades. We will drop the lowest grade
- Cooperation is allowed, always write down solutions on your own
- Final grade = average of grade final exam and exercises

Het is opgelost; het grootste en mooiste probleem uit de computerwetenschap, Dat zegt een onderzoeker. In zijn bewijs zitten nog veel gaten, zeggen anderen. ot Margriet van der Heijder

ite une Veters enrealer une b problem in de computer weten De Clay Pourciatien heefde iljoen dallar uit voer de oploy ker bij ITP Labs in Palo Alto dat hij die op ing heeft geophich.

Op 6 augustus stuurde Deolalikar een sele icandiren en compaterwe juorojo valkandigen en computerwetterichar-pers een lang mankardtip. Dazaris gal bit anat-woord op de betoemde vrzag die Stephen Gacke en Lovidi Lovia in 1974 oonstankelijk van el-lane formit ereien. Kert gezegel als 3e makke-lijk kaun controleren of de oplosing van een probleem juist is. zurig ied en geheving dan in principe oek unddelijk moeren kunnen vin

onclusieer: Deplatikar na 162 navina' warin hij uireenlopende takken van wisknode en computerwete ischappen blj elkaar brehat. En daarmee verbaade bij enlegta, want zij aliten dai deze convoludige vraag nagenoe nmoselijk te beantwoorden was.

Ben populaire metaloer soor het probleem is die van de legpuxzel, zeg sentje met duizen: stukjes. Of die allemaal juist aan elkaar zijn ge erables of die allemaal juist aan elkaar nijn ge-praar in is jake onooptogistie. Matte die punzel naa-ben verge vulkken meer viel, in nachtes geldt sook voor voor goed goedkommen. Net goedkommen van die kanden die erkenne elevale krijet, zie je die erer viel die erkenne elevale krijet, zie je die erer die die die die goed is die erkenne elevale krijet, zie je die erer die die goed zie die die die die kantote weg die een kunstieschaten, kon ontena die die kontote weg die een kunstieschaten, kon ontena die die derite versteel

animetaschapper kein neuten na nie (terup socion-alienna) den koer wil austricht en deauma Luis wil aankomen. Maar die kortste weg zumaar sindern, wek daarvoer bestaar nog Alfd geen optimale methode. Bis zosijn er daizenden NP-noblemen gefannuleerd.

problems genomieral. Bestauer instachen soch een mikkelijst oom Destauer instachen soch een mikkelijst oom Propositier van verstaanste Propositier van verstaanste entig te van verstaanste entig

De oplossing van het onoplosbare

bewijs wilde ik alteen een beperkt aantal onder-zoekere om commentaar vragen, naar goed ge beuik [...] Ik heb al de kwestes die rond de veobruik [...] Ik heb al de kwest, ei die rand de voor-lopige versie zijn apgewarpen opgelost [...] Het herziene manuscript beb ik naar een kleir zan-Alter and a set of relation to a body get and a set of a set of the set of

Lin on hoppide date nict bli, mal t deze dette noer chere efficient op re losen is (striker!" er er vij blog, efficient her efficient op re losen in (striker!" er er vij blog, efficient her efficient op striker in efficie

The New Hork Times

Step 1: Post Elusive Proof. Step 2: Watch Fireworks.

By John Markoff

Published: August 16, 2010

The potential of Internet-based collaboration was vividly demonstrated this month when complexity theorists used blogs and wikis to pounce on a claimed proof for one of the most profound and difficult problems facing mathematicians and computer scientists.

Monday, August 9th, 2010

Putting my money where my mouth isn't

A few days ago, Vinay Deolalikar of HP Labs started circulating a claimed proof of $P \neq NP$. As anyone could predict, the alleged proof has already been Slashdotted (see also Lipton's blog and Bacon's blog), and my own inbox has been filling up faster than the Gulf of Mexico. Bloggers slopen droombewijs

Niet één middelbare school kiezen maar wel tien

8.000 kinderen kiezen dezer dagen een middelbare school in Amsterdam. Populaire scholen moesten vorig jaar 518 leerlingen uitloten. Nu is het systeem anders. "De pijn wordt beter verdeeld." Mirjam Remie Bram Budel

NRC 🌉

• 18 juni 2015, 10:42

A'damse ouders boos over uitgelote kinderen: scholenkoepel bedreigd

arlaeus Gymnasium in Amsterdam, een van de populaire scholen. ANP / Kippa

NLAND Een commissievergadering in het terdamse stadhuis zit vol met boze ouders, zo It AT5. Ze willen hun onvrede uiten over het

door Mirjam Remie

aar ingevoerde 'matchingsysteem', waarmee 7.500 achtstegroepers via een computer op niddelbare school zijn geplaatst. Gisteren bleek dat de helpdesk van scholenkoepel o naar een geheime locatie is verhuisd vanwege bedreigingen van ouders aan ewerkers.

ers zijn boos dat zij niets meer kunnen doen aan de uitslag van de matching. De meeste eren zijn geplaatst in de top-5 (99 procent) of top-8 (95 procent) van het lijstje van plaatst cookies om een optimale gebruikerservaring te kunnen bieden. De cookies worden ingezet P versus NP problem

P versus NP

- One of the seven millennium prize problems
- "In the case of the P versus NP problem and the Navier-Stokes problem, the SAB will consider the award of the Millennium Prize for deciding the question in either direction."
- P not equal NP \Rightarrow 1 million \$
- P equal NP \Rightarrow **6 million \$**

Main characters: Algorithms

Algorithm

• Algorithm is like a cooking recipe

Algorithm

Algorithm is like a cooking recipe

Algorithm

algorithm is like a cooking recipe

- input
- computation
 - steps (1 time unit)
- output

mix

Declare variables:

mix = mix + flour spread (mix) While not clean (fork) bake (mix, 350)

butter

sugar

chocolate eggs

 $mix = stir (mix + (2^*sugar))$

vanilla

flour mix = meted ((4*chocolate) + butter)

mix = stir (mix + (3 eggs) + vanilla)

Remove

fromOver

Ϋ́

Let

φ

Example Greatest Common Divisor (GCD)

Slow Algorithm

a=21 b=13

step 1	i=13	13 { 21
step 2	i=12	12 ∤ 21
step 3	i=11	11 ∤ 21
step 4	i=10	10 † 21
step 7	i=7	: 7∤13 :

slow-gcd(a, b)
 i = min(a,b)
 while i ∤ a or i ∤ b
 i := i -1
output i

output 1

i=1

step 13

Analysis of Algorithm

Analysis of alg. is preparation time of recipe

Slow Algorithm

a=21 b=13

step 1 step 2	i=13 i=12	13 ∤ 21 12 ∤ 21	
step 3	i=11	11 ∤ 21	
step 4	i=10	10 ∤ 21	
step 7	i=7	: 7 ∤ 13 :	ſ
step 13	i=1		

slow-gcd(a, b)
i = min(a,b)
while i ∤ a or i ∤ b
i := i -1
output i

if gcd(a,b)=1 then
algorithm uses min(a,b) steps

output 1

Better Algorithm

Euclidean Algorithm

Greatest Common Divisor (GCD)

step 0	a=21	b=13
step 1	a=13	<mark>b=</mark> 21 mod 13 = 8
step 2	a=8	<mark>b=</mark> 13 mod 8 = 5
step 3	a=5	<mark>b=</mark> 8 mod 5 = 3
step 4	a=3	<mark>b=</mark> 5 mod 3 = 2
step 5	a=2	<mark>b=</mark> 3 mod 2 = 1
step 6	a=1	<mark>b=</mark> 2 mod 1 = 0
output 1		

function gcd(a, b) while $b \neq 0$ t := b b := a **mod** b a := t output a

Analysis GCD-Algorithm

• worst case number of steps?

Theorem alg. terminates in 2log (m) +1 steps m=max(a,b)

Proof:

every second step a is at least halved

function gcd(a, b) **while** b ≠ 0 t := b b := a **mod** b a := t **output** a

step 0	
step 1	
step 2	
step 3	
step 4	
step 5	
step 6	

a=21	b=13
a=13	b= 21 mod 13 = 8
a=8	<mark>b=</mark> 13 mod 8 = 5
a=5	b= 8 mod 5 = 3
a=3	<mark>b=</mark> 5 mod 3 = 2
a=2	b= 3 mod 2 = 1
a=1	<mark>b=</mark> 2 mod 1 = 0

Complexity

- Euclid: 2log (m) +1 m =max(a,b)
- Slow: **m' m'**= min(a,b)
- Length of the input: log(a) + log(b) = n

Euclid: O(n) Slow: $2^{O(n)}$

- Euclid exponentially faster than slow!
- Complexity of computational problem is running time of the best algorithm

Computation & Complexity

- Computational problem:
 - INPUT, computation , OUTPUT
 - Example: a,b output gcd(a,b)
- Complexity:
 - Number of computation steps needed for
 - "best" algorithm
 - function of the input size

Complexity

- Determine the complexity of a computational problem:
 - Upper bound: construct algorithm
 - Lower bound: any algorithm needs this many steps

STOP

functions of the input size

Complexity of gcd problem

- Euclid's algorithm runs in O(n) steps
- Can we devise a faster algorithm?
- Not really: any algorithm has to read the whole input: requires n steps
 - Upper Bound: O(n)
 - Lower Bound: $\Omega(n)$
- Complexity of gcd is linear.

Complexity Class P

Feasible Problems: P

- Feasible or efficient algorithms run in polynomial time: n^c (some c)
- Complexity Class P :
 - All the problems that have feasible algorithms
- Example:
 - Linear Programming
 - Network Flow Problems
 - Shortest Path

For these problems upper bound is "close" to lower bound: at most polynomial far off. Another problem Satisfiablity

Satisfiability

- variables
- Clause
- formula
- exist
- such that

 $x_1 \dots x_n$ $C_1 \dots C_m \qquad C_l = (x_i \lor x_j \lor \overline{x_k})$ $\phi(x_1 \dots x_n) = C_1 \land \dots \land C_m$ $\alpha_1 \dots \alpha_n \qquad \alpha_i \in \{T, F\}$ $\phi(x_1 = \alpha_1 \dots x_n = \alpha_n) = T$

Example

F F T T T F F $(\overline{x_1} \vee \overline{x_2}) \wedge (x_1 \vee x_3) \wedge (x_2 \vee \overline{x_3}) \wedge (\overline{x_1} \vee x_3)$ \wedge T \wedge T \wedge FTF $x_1 = T$ $x_2 = T$ $x_3 = T$

Example

Satisfiability

- variables
- Clause
- formula
- exist

- $x_1 \dots x_n$ $C_1 \dots C_m \qquad C_l = (x_i \lor x_j \lor \overline{x_k})$ $\phi(x_1 \dots x_n) = C_1 \land \dots \land C_m$ $\alpha_1 \dots \alpha_n \qquad \alpha_i \in \{T, F\}$
- such that $\phi(x_1 = \alpha_1 \dots x_n = \alpha_n) = T$

 $SAT = \{ \phi \mid \phi \text{ is satisfiable} \}$

simple algorithm: try all 2ⁿ assignments

Unknown Complexity

- It is hard to determine the complexity of many problems
- Example:
 - Is this formula satisfiable? SAT
 - Traveling Salesman Problem. **TSP**
- Lower Bound: n
- Upper Bound: 2ⁿ

Complexity Class NP

NP

- P = class of problems that are efficiently computable.
- NP = class of problems that have efficiently checkable solutions.
 - but solution may be hard to find!

NP

complexity class NP

- polynomial time to check solution

polynomial time computable in length of x only

$$\varphi$$
 is satisfiable
 $\exists \alpha : \varphi(\alpha) = True$

P & NP

- complexity class NP
 - easy to check solution
 - polynomial time check
 - easy to check assignment is satisfiable
 - versus
- complexity class P
 - easy to find solution
 - decide in polynomial time
 - compute in polynomial time gcd(a,b)

Reductions & Completeness

reduction

compute A in poly-time with B as free subroutine

"A is computationally not harder than B"

"if B in P then A in P"

C is NP-complete

 ${\boldsymbol{\cdot}} \, C \in {\sf NP}$

• all $\mathsf{A} \in \mathsf{NP}: \mathsf{A} {\leq}^p_T \mathsf{C}$

Theorem

SAT, TSP, many others NP-complete
SAT in P ⇔ P=NP

P versus NP

P versus NP Question

- P = NP?
- widely believed that $P \neq NP$
- how to show this is true?
 - Prove better lower bounds for existing problems like SAT
 - Construct problem in NP with super polynomial lower bound

Lower Bounds

- Construct $D \in NP$
- no poly-time algorithm solves D
 - for every poly time algorithm M exists a string x such that:

•
$$M(x) = 1 \& x \notin D$$
 or

 \Rightarrow D not in P

• $M(x) = 0 \& x \in D$

 $\mathsf{D} \leq^p_T \mathsf{SAT} \Rightarrow \mathsf{SAT}$ not in P

Diagonalization

How big are the reals ?

• Cantor showed \mathbb{R} not enumerable

- diagonalization
 - given an enumeration of the reals
 - construct real number d not in the enumeration

d= 0.9 3 0 7 0 7 2 5 … ith digit of d is ith entry of diagonal +1

reals in some enumeration

Diagonalizing out of P

 x_i in D if and only if $M_i(x_i)=0$

polynomial time algorithms

D ∉ P, every poly-time machine errs on some input

 $D \in NP$?? probably not, but

D ∈ time(n^{log n}), quasi polynomial time

with more time can compute more

More Bad News

- Relativization (Oracles):
 - Exists oracle A: $P^A = NP^A$
 - (Exists oracle B: $\mathbf{P}^{B} \neq \mathbf{NP}^{B}$)

Proof technique should not relativize

Diagonalization and most other techniques we know relativize

Try something easier

- Study weaker models of computation and develop new lower bound techniques
 - Circuits with small depth
 - Monotone circuits
 - Decision Trees
 - Branching Programs
- The weaker the model the better the lower bounds!

Simple model: Circuits

Circuit Model of Computation

Size of the Circuit

most important:
 number of gates

2. Depth of the circuit

Parallel time of computation

Constant Depth

Note: $d = \log n$ bound is meaningless

natural proofs another hurdle?

- proof technique that shows parity not in AC⁰ likely won't work to separate P from NP
- these proofs fit in a framework called natural proofs

Theorem

if one-way functions exist then

natural proofs can't separate P and NP

Approaches

- Structural approach using eg. autoreducibility
- Combinatorial approach
- Algebraic, degrees of multivariate polynomials
- Geometric Complexity
 - algebraic geometry
 - representation theory
- Communication complexity

P vs NP & Cryptography

- computational hardness guarantees security of cryptographic protocols
 - factoring, discrete logarithm
 - lattice problems
 - learning problems
- one-way functions
 - compute f(x) quickly
 - hard to invert
- if P=NP then no cryptography

Beyond NP

coNP

 $L \in coNP \leftrightarrow \overline{L} \in NP$ $x \in L: \forall y P(x, y) = 0$

 $\phi \in \overline{SAT}$: $\phi(x)$ has no satisfying assignment

Tangram: puzzle has no solution

Polynomial Time Hierarchy first level $L \in NP$: $L \in coNP$: $x \in L$: $\exists y P(x, y) = 1$ $x \in L$: $\forall P(x, y) = 0$ Σ_1^p Π_1^p second level $L \in \Sigma_2^p$: $L \in \Pi_2^p$: $x \in L: \exists y \forall z P(x, y, z) = 1$ $x \in L: \forall y \exists z P(x, y, z) = 0$

Circuit Minimization (CM): given circuit $A \exists$ circuit $B < A \forall x: A(x) = B(x)$

CM is Σ_2^p -complete

Polynomial Time Hierarchy first level $L \in NP$: $L \in coNP$: $x \in L$: $\exists y P(x, y) = 1$ $x \in L$: $\forall P(x, y) = 0$ Σ_1^p Π_1^p second level $L \in \Sigma_2^p$: $L \in \Pi_2^p$: $x \in L: \exists y \forall z P(x, y, z) = 1$ $x \in L: \forall y \exists z P(x, y, z) = 0$ $L \in \Sigma_3^p$: $\mathsf{PH} = \bigcup_i \Sigma_i^p$ $x \in L: \exists y_1 \forall y_2 \exists y_3 P(x, y_1, y_2, y_3) = 1$

Space Complexity

to boldly go where no man has gone before

Space Complexity

- Time of a computation not only resource that matters
- Space or memory the computer uses
- L: logarithmic space usage
 - models web applications
- **PSPACE:** polynomial space usage
 - natural class with natural complete problems

Quantum Polynomial Time

- New Complexity Class
- Problems that can be efficiently computed on a quantum computer

BQP

• Where does BQP sit in the complexity landscape?

P=NP

- P=NP, but the proof does not give us an algorithm
- P=NP, but algorithm for SAT runs in time
 n¹⁰⁰⁰⁰⁰⁰
- P=NP, but algorithm for SAT runs in time 2¹⁰⁰n
- P=NP, and algorithm for SAT runs in time n²

n² algorithm for SAT

- Wonderful!!!
 - computing ground states of Hamiltonians
 - protein folding problem solved
 - artificial Intelligence takes really off
 - optimal scheduling
 - computational learning theory
 - weather prediction improves

n² algorithm for SAT

- For mathematics
 - can find proofs to theorems, provided they have short proofs
 - can simply ask computer whether theorem/conjecture is true/false
 - mathematics will change dramatically
 - quickly solve the other 5 remaining Clay problems

Summary

- P versus NP central, not just in mathematics and computer science but also in physics, biology, chemistry, cryptography etc.
- Not clear how to attack it, several obstacles: relativization, natural proofs, algebraization
- Much simpler questions are still way out of reach
- If P=NP, the world would drastically change, with lots of fantastic application, but no privacy (cryptography).

Schedule

- 2) P, NP, reductions, co-NP
- 3) Cook-Levin Thm:3-SAT is NP-complete, Decision vs Search
- 4) Diagonalization, time hierarchies
- 5) Relativization
- 6) Space complexity, PSPACE, L, NL
- 7) The polynomial hierarchy
- 8) Circuit complexity, the Karp-Lipton Theorem
- 9) Parity not on AC^0
- 10) Probabilistic algorithms
- 11) BPP, circuits and polynomial hierarchy
- 12) Interactive proofs, Graph-Isomorphism problem
- 13) IP = PSPACE

https://exploration.open.wolframcloud.com/objects/exploration/Turing.nb