Computational Complexity

Harry Buhrman
(buhrman@cwi.nl)
Tom Bannink
(bannink@cwi.nl)

Algorithms \& Complexity group
 QuSoft

(7) uSoft

Course requirements

- Computational Complexity: A Modern Approach by Arora
\& Barak (http://www.cs.princeton.edu/theory/complexity/)
- lectures (hoorcollege)
- Tuesday 13:00-15:00, Thursday 13:00-15:00
- werkcollege:
- Friday 9:00-11:00
- http://turing-machine.nl/

- Compulsory: hand in exercises every week on Tuesday
- Final exam

Grade

- Hand in exercises before lecture on Tuesday the week after they were distributed
- Final grade exercises is average of obtained grades. We will drop the lowest grade
- Cooperation is allowed, always write down solutions on your own
- Final grade = average of grade final exam and exercises

De oplossing van het onoplosbare

Monday, August 9th, 2010

Putting my money where my mouth isn't

A few days ago, Vinay Deolalikar of HP Labs started circulating a claimed proof of $\mathrm{P} \neq \mathrm{NP}$. As anyone could predict, the alleged proof has already been Slashdotted (see also Lipton's blog and Bacon's blog), and my own inbox has been filling up faster than the Gulf of Mexico.
|Bloggers slopen droombewijs

位 middelbare scholen. Volgens Krijn van Beek is het een onzichtbare megaloting en een ideaal middel om klagende ouders te omzeilen, zo schrijft hij in een opinie-artikel in Het Parool.

nrc.nl>

	euws	Weblogs	Columns			In beeld
	uws	Wediogs	Coiumns	Cuituur	Carriere	In beeld

- 18 Juni 2015, 10:42

A'damse ouders boos over uitgelote kinderen: scholenkoepel bedreigd

Niet één middelbare school kiezen maar wel tien

8.000 kinderen kiezen dezer dagen een middelbare school in Amsterdam. Populaire scholen moesten vorig jaar 518 leerlingen uitloten. Nu is het systeem anders. „De pijn wordt beter verdeeld."
Mirjam Remie Bram Budel
P versus NP problem

P versus NP

- One of the seven millennium prize problems
- "In the case of the P versus NP problem and the NavierStokes problem, the SAB will consider the award of the Millennium Prize for deciding the question in either direction."
- P not equal NP $\Rightarrow 1$ million \$
- P equal $N P \Rightarrow$ $\quad \Rightarrow$ miilliom $\$$

Main characters: Algorithms

Algorithm

- Algorithm is like a cooking recipe

Algorithm

- Algorithm is like a cooking recipe

Recipe
CHOCOLATE CANE

4 cz. chocolate
1 cup butter
2 cups sugar

3 eggs
1 t今p varilla 1 eup flour

Melt chocolate and butter. Stir zugar into melted chocolate Stir in eggs and vanilla Mx in flour. Spread mix in greased pan Bake at 350_for 40 minutes or urtil ineerted fork comes out almost clean Cool in pan before eating.

Program Code
Declare variables
chocolate eggs mix
butter vanilla sugar flour
mix $=$ melted ($\left(4^{*}\right.$ chocdate) + butter) mix $=$ stir (mix $\left.+\left(2^{*} s \cup g a r\right)\right)$
mix $=\operatorname{sir}\left(\right.$ mix $+\left(3^{*}\right.$ eggs $\left.)+v a n i l l a\right)$ mix $=$ mix + flour
spread (mix)
While nd clean (fork)
bake (mix, 350)

Algorithm

- algorithm is like a cooking recipe
- input
- computation
- steps (1 time unit)
- output

Example

Greatest Common Divisor (GCD)

Slow Algorithm

$$
a=21 \quad b=13
$$

step 1	$\mathrm{i}=13$	$13 \nmid 21$
step 2	$\mathrm{i}=12$	$12 \nmid 21$
step 3	$\mathrm{i}=11$	$11 \nmid 21$
step 4	$\mathrm{i}=10$	$10 \nmid 21$

$$
\begin{aligned}
& \text { slow-gcd }(\mathrm{a}, \mathrm{~b}) \\
& \mathrm{i}=\min (\mathrm{a}, \mathrm{~b}) \\
& \text { while } \mathrm{i} \nmid \mathrm{a} \text { or } \mathrm{i} \nmid \mathrm{~b} \\
& \mathrm{i}:=\mathrm{i}-1 \\
& \text { output } \mathrm{i} \\
& \hline
\end{aligned}
$$

$\begin{array}{cc}\text { step } 7 \quad i=7 \quad & 7 \nmid 13\end{array}$
step $13 \quad \mathrm{i}=1$
output 1

Analysis of Algorithm

Analysis of alg. is preparation time of recipe

CARL SAGAN'S APPLE PIE

1 universe
19 " pie shell
6 cups sliced apples
3/4 cup sugar
1/2 cup brown sugar

Remember "If you want to make an apple pie from scratch, you must first create the universe."

2 tbsp all-purpose fl
1/2 tsp cinnamon
1/8 tsp nutmeg
1/2 cup all-purpose flour
3 tbsp butter

Preparation time:

 12-20 billion years
Preheat oven ti Make the universe as usual.

Place apples in a large bowı. ni a s......... vovvi, mix together sugar, 2 tbsp flour, cinnamon, and nutmeg. Sprinkle mixture over apples. Toss until evenly coated. Spoon mixture into pie shell.

In a small bowl mix together $1 / 2$ cup flour and brown sugar. Add butter until mixture is crumbly. Sprinkle mixture over apples. Cover loosely with aluminum foil.

Bake in preheated oven for 25 minutes. Remove foil and bake another 30 minutes, or until golden brown.

Slow Algorithm

$$
a=21 \quad b=13
$$

step 1	$\mathrm{i}=13$	$13 \nmid 21$
step 2	$\mathrm{i}=12$	$12 \nmid 21$
step 3	$\mathrm{i}=11$	$11 \nmid 21$
step 4	$\mathrm{i}=10$	$10 \nmid 21$

$$
\begin{aligned}
& \text { slow-gcd }(a, b) \\
& i=\min (a, b) \\
& \text { while } \mathbf{i} \nmid \mathrm{a} \text { or } \mathrm{i} \nmid \mathrm{~b} \\
& \mathrm{i}:=\mathrm{i}-1 \\
& \text { output } \mathrm{i} \\
& \hline
\end{aligned}
$$

step $7 \quad i=7 \quad 7 \nmid 13$
step $13 \quad \mathrm{i}=1$
if $\operatorname{gcd}(a, b)=1$ then
algorithm uses min (a, b) steps

Better Algorithm

Euclidean Algorithm

Greatest Common Divisor (GCD)

step 0	$a=21$	$b=13$
step 1	$a=13$	$b=21 \bmod 13=8$
step 2	$a=8$	$b=13 \bmod 8=5$
step 3	$a=5$	$b=8 \bmod 5=3$
step 4	$a=3$	$b=5 \bmod 3=2$
step 5	$a=2$	$b=3 \bmod 2=1$
step 6	$a=1$	$b=2 \bmod 1=0$
	output 1	

function $\operatorname{gcd}(a, b)$
while $\mathrm{b} \neq 0$
$\mathrm{t}:=\mathrm{b}$
b := a mod b
a := t
output a

Analysis GCD-Algorithm

- worst case number of steps?
Theorem
alg. terminates in
$2 \log (m)+1$ steps
$m=\max (a, b)$

Proof:
every second step a is at least halved
function $\operatorname{gcd}(a, b)$
while $\mathrm{b} \neq 0$
$\mathrm{t}:=\mathrm{b}$
$\mathrm{b}:=\mathrm{a} \bmod \mathrm{b}$
a := t
output a
step 0
step 1
step 2
step 3
step 4
step 5
step 6
$a=21 \quad b=13$
$a=13 b=21 \bmod 13=8$
$a=8 \quad b=13 \bmod 8=5$
$a=5 \quad b=8 \bmod 5=3$
$a=3 \quad b=5 \bmod 3=2$
$a=2 \quad b=3 \bmod 2=1$
$a=1 \quad b=2 \bmod 1=0$

Complexity

- Euclid: $2 \log (m)+1 \quad m=\max (a, b)$
- Slow: $\quad m^{\prime} \quad m^{\prime}=\min (a, b)$
- Length of the input: $\log (a)+\log (b)=n$

```
Euclid: O(n)
Slow: \(2^{O(n)}\)
```

- Euclid exponentially faster than slow!
- Complexity of computational problem is running time of the best algorithm

Computation \& Complexity

- Computational problem:
- INPUT. computation OUTPUT
- Example: a,b output gcd(a,b)
- Complexity:
- Number of computation steps needed for "best" algorithm
- function of the input size

Complexity

- Determine the complexity of a computational problem:
- Upper bound: construct algorithm
- Lower bound: any algorithm needs this many steps
- Ideally upper bound = lower bound

functions of the input size

Complexity of gcd problem

- Euclid's algorithm runs in O(n) steps
- Can we devise a faster algorithm?
- Not really: any algorithm has to read the whole input: requires n steps
- Upper Bound: O(n)
- Lower Bound: $\Omega(\mathrm{n})$
- Complexity of gcd is linear.

Complexity Class P

Feasible Problems: P

- Feasible or efficient algorithms run in polynomial time: n^{c} (some c)
- Complexity Class P :
- All the problems that have feasible algorithms
- Example:
- Linear Programming
- Network Flow Problems
- Shortest Path

For these problems upper bound is "close" to lower bound: at most polynomial far off.

Another problem Satisfiablity

Satisfiability

- variables $x_{1} \ldots x_{n}$
- Clause $\quad C_{1} \ldots C_{m}$

$$
C_{l}=\left(x_{i} \vee x_{j} \vee \overline{x_{k}}\right)
$$

- formula $\phi\left(x_{1} \ldots x_{n}\right)=C_{1} \wedge \ldots \wedge C_{m}$
- exist $\alpha_{1} \ldots \alpha_{n} \quad \alpha_{i} \in\{T, F\}$
- such that $\phi\left(x_{1}=\alpha_{1} \ldots x_{n}=\alpha_{n}\right)=T$

Example

Example

Satisfiability

- variables $x_{1} \ldots x_{n}$
- Clause $\quad C_{1} \ldots C_{m}$

$$
C_{l}=\left(x_{i} \vee x_{j} \vee \overline{x_{k}}\right)
$$

- formula $\phi\left(x_{1} \ldots x_{n}\right)=C_{1} \wedge \ldots \wedge C_{m}$
- exist $\alpha_{1} \ldots \alpha_{n} \quad \alpha_{i} \in\{T, F\}$
- such that $\phi\left(x_{1}=\alpha_{1} \ldots x_{n}=\alpha_{n}\right)=T$

$$
S A T=\{\phi \mid \phi \text { is satisfiable }\}
$$

simple algorithm: try all 2^{n} assignments

Unknown Complexity

- It is hard to determine the complexity of many problems
- Example:
- Is this formula satisfiable? SAT
- Traveling Salesman Problem. TSP
- Lower Bound: n
- Upper Bound: 2^{n}

Best Known!

Complexity Class NP

NP

- $P=$ class of problems that are efficiently computable.
- NP = class of problems that have efficiently checkable solutions.
- but solution may be hard to find!

Tangram P: compute solution NP: easy to check solution

NP

- complexity class NP
- polynomial time to check solution
- x in L: exists a $y: P(x, y)=1$ (true) polynomial time computable in length of x only

SAT in NP
φ is satisfiable
$\exists \alpha: \varphi(\alpha)=$ True

P \& NP

- complexity class NP
- easy to check solution
- polynomial time check
- easy to check assignment is satisfiable
- complexity class P
- easy to find solution
- decide in polynomial time
- compute in polynomial time $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$

Reductions \& Completeness

reduction

$$
\mathrm{A} \leq_{T}^{p} \mathrm{~B}
$$

compute A in poly-time with B as free subroutine
" A is computationally not harder than B "
"if B in P then A in P"

C is NP-complete

- $C \in N P$
- all $\mathrm{A} \in \mathrm{NP}: \mathrm{A} \leq_{T}^{p} \mathrm{C}$

Theorem
-SAT, TSP, many others NP-complete
-SAT in $P \Leftrightarrow P=N P$
P versus NP
$P \neq N P$

$P=N P$

P versus NP Question

- $P=N P ?$
- widely believed that $P \neq N P$
- how to show this is true?
- Prove better lower bounds for existing problems like SAT
- Construct problem in NP with super polynomial lower bound

Lower Bounds

- Construct D \in NP
- no poly-time algorithm solves D
- for every poly time algorithm M exists a string x such that:
- $M(x)=1 \quad \& \quad x \notin D$ or
- $M(x)=0 \& x \in D$

$$
\Rightarrow \mathrm{D} \text { not in } \mathrm{P}
$$

$$
\mathrm{D} \leq_{T}^{p} \mathrm{SAT} \Rightarrow \mathrm{SAT} \text { not in } \mathrm{P}
$$

Diagonalization

How big are the reals ?

- Cantor showed \mathbb{R} not enumerable
- diagonalization
- given an enumeration of the reals
- construct real number d not in the enumeration

Diagonalization

Diagonalizing out of P

Diagonalization (2)

polynomial time algorithms

| | x_{1} | x_{2} | x_{3} | x_{4} | x_{5} | x_{6} | x_{7} | x_{8} | \rightarrow |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| M_{1} | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | |
| M_{2} | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | |
| M_{3} | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | |
| M_{4} | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | |
| M_{5} | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | |
| M_{6} | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | |
| M_{7} | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | |
| M_{8} | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | |
| \downarrow | | | | | | | | | |
| | x_{1} | x_{2} | x_{3} | x_{4} | x_{5} | x_{6} | x_{7} | x_{8} | |
| | $\in D$ | $\notin D$ | $\notin D$ | $\in D$ | $\notin D \in D$ | $\notin D$ | $\notin D$ | | |

Diagonal Language

$$
D=\left\{x_{i} \mid M_{i}\left(x_{i}\right)=0\right\}
$$

$$
i^{\text {th }} \text { poly-time algorithm/machine }
$$

$D \notin \mathrm{P}$, every poly-time machine errs on some input

D \in NP ?? probably not, but
$D \in$ time $\left(n^{\log n}\right)$, quasi polynomial time
with more time can compute more

More Bad News

- Relativization (Oracles):
- Exists oracle A: $\mathbf{P}^{A}=\mathbf{N P}^{A}$
- (Exists oracle B: $\mathbf{P}^{B} \neq \mathbf{N P}^{B}$)

Proof technique should not relativize

Diagonalization and most other techniques we know
relativize

Try something easier

- Study weaker models of computation and develop new lower bound techniques
- Circuits with small depth
- Monotone circuits
- Decision Trees
- Branching Programs
- The weaker the model the better the lower bounds!

Simple model:

Circuits

Circuit Model of Computation

Size of the Circuit

1. most important: number of gates
2. Depth of the circuit

Parallel time of computation

Constant Depth

depth is constant
size \quad is polynomial

$$
\mathrm{AC}^{0}
$$

Note: $d=\log n$ bound is meaningless

natural proofs another hurdle?

- proof technique that shows parity not in $A C^{0}$ likely won't work to separate P from NP
- these proofs fit in a framework called natural proofs

```
Theorem
if one-way functions exist then
natural proofs can't separate P and NP
```


Approaches

- Structural approach using eg. autoreducibility
- Combinatorial approach
- Algebraic, degrees of multivariate polynomials
- Geometric Complexity
- algebraic geometry
- representation theory
- Communication complexity

P vs NP \& Cryptography

- computational hardness guarantees security of cryptographic protocols
- factoring, discrete logarithm
- lattice problems
- learning problems
- one-way functions

- compute f(x) quickly
- hard to invert
- if $P=N P$ then no cryptography

Beyond NP

coNP

$$
\begin{aligned}
& L \in \operatorname{coNP} \leftrightarrow \bar{L} \in N P \\
& x \in L: \forall y P(x, y)=0
\end{aligned}
$$

$\phi \in \overline{S A T}: \phi(x)$ has no
satisfying assignment
Tangram:
puzzle has no solution

Polynomial Time Hierarchy

$$
\begin{gathered}
L \in N P: \quad \text { first level } \quad L \in \operatorname{coNP:} \\
x \in L: \exists y P(x, y)=1 \quad x \in L: \forall P(x, y)=0 \\
\sum_{1}^{p} \\
L \in \sum_{2}^{p}: \quad \text { second level } \quad \prod_{1}^{p} \\
x \in L: \exists y \forall z P(x, y, z)=1 \quad x \in L: \forall y \exists z P(x, y, z)=0
\end{gathered}
$$

Circuit Minimization (CM):
given circuit $A \exists$ circuit $B<A \quad \forall x: A(x)=B(x)$
CM is Σ_{2}^{p}-complete

Polynomial Time Hierarchy

$L \in N P: \quad$ first level $\quad L \in \operatorname{coNP}:$ $x \in L: \exists y P(x, y)=1 \quad x \in L: \forall P(x, y)=0$
Σ_{1}^{p}
Π_{1}^{p}
$L \in \Sigma_{2}^{p}$:
$L \in \Pi_{2}^{p}:$
$x \in L: \exists y \forall z P(x, y, z)=1 \quad x \in L: \forall y \exists z P(x, y, z)=0$

$$
\begin{gathered}
L \in \sum_{3}^{p}: \\
x \in L: \exists y_{1} \forall y_{2} \exists y_{3} P\left(x, y_{1}, y_{2}, y_{3}\right)=1
\end{gathered}
$$

$\mathrm{PH}=\mathrm{U}_{i} \sum_{i}^{p}$

Space Complexity

to boldly go : no man ha. . ie pefore

Space Complexity

- Time of a computation not only resource that matters
- Space or memory the computer uses
- L: logarithmic space usage
- models web applications
- PSPACE: polynomial space usage
- natural class with natural complete problems

Quantum Polynomial Time

- New Complexity Class
- Problems that can be efficiently computed on a quantum computer

BQP

- Where does BQP sit in the complexity landscape?

$P=N P$

- $P=N P$, but the proof does not give us an algorithm
- $P=N P$, but algorithm for SAT runs in time $\mathrm{n}^{1000000}$
- $P=N P$, but algorithm for SAT runs in time $2^{100} n$
- $P=N P$, and algorithm for SAT runs in time n^{2}

n^{2} algorithm for SAT

- Wonderful!!!
- computing ground states of Hamiltonians
- protein folding problem solved
- artificial Intelligence takes really off
- optimal scheduling
- computational learning theory
- weather prediction improves

n^{2} algorithm for SAT

- For mathematics
- can find proofs to theorems, provided they have short proofs
- can simply ask computer whether theorem/conjecture is true/false
- mathematics will change dramatically
- quickly solve the other 5 remaining Clay problems

Summary

- P versus NP central, not just in mathematics and computer science but also in physics, biology, chemistry, cryptography etc.
- Not clear how to attack it, several obstacles: relativization, natural proofs, algebraization
- Much simpler questions are still way out of reach
- If $P=N P$, the world would drastically change, with lots of fantastic application, but no privacy (cryptography).

Schedule

2) $P, N P$, reductions, co-NP
3) Cook-Levin Thm:3-SAT is NP-complete, Decision vs Search
4) Diagonalization, time hierarchies
5) Relativization
6) Space complexity, PSPACE, L, NL
7) The polynomial hierarchy
8) Circuit complexity, the Karp-Lipton Theorem
9) Parity not on $A C^{\wedge} 0$
10) Probabilistic algorithms
11) BPP, circuits and polynomial hierarchy
12) Interactive proofs, Graph-Isomorphism problem
13) $I P=P S P A C E$
https://exploration.open.wolframcloud.com/objects/exploration/Turing.nb
