Complexity Theory

Final Exam
(3h duration)

December 18, 2012

Each exercise is worth 2 points, except for (3b) which is worth 1 point ${ }^{1}$. Required definitions and hints for the exercises follow below. Feel free to use the book, or your own notes.

Exercise 1. Prove that the "exact one-two" function $E_{12}^{(n)}$ has degree exactly 2^{n} over the field \mathbb{R}, i.e., that $\operatorname{deg}_{\mathbb{R}}\left(E_{12}^{(n)}\right)=2^{n}$.

Exercise 2. Prove that $A \in \mathrm{P} /$ poly if and only if $A \in \mathrm{P}^{\text {SPARSE }}$.

Exercise 3. (a) Prove that BPP ${ }^{B P P}=B P P$.
(b) (bonus) Prove that $\mathrm{NP}^{\mathrm{BPP}} \subseteq \mathrm{BPP}^{\mathrm{NP}}$.

Exercise 4. Prove that $\mathrm{P} / n^{2} \subseteq \mathrm{P} / n^{3}$; then prove that this inclusion is strict.

Exercise 5. Show that if EXP \subseteq PSPACE/poly, then EXP $=$ PSPACE

[^0]
Definitions

Definition 1 (Exact one-two function). The "exact one-two" function $E_{12}^{(n)}$ is the boolean function defined inductively by:
(i) $E_{12}^{(1)}\left(x_{1}, x_{2}, x_{3}\right)=1$ if exactly 1 or exactly 2 of the inputs x_{1}, x_{2}, x_{3} are equal to 1, and $E_{12}^{(1)}\left(x_{1}, x_{2}, x_{3}\right)=0$ otherwise, i.e.,

$$
E_{12}^{(1)}\left(x_{1}, x_{2}, x_{3}\right)=1 \Longleftrightarrow\left|\left\{x_{i} \mid x_{i}=1, i=1,2,3\right\}\right| \in\{1,2\} .
$$

(ii) $E_{12}^{(n+1)}=E_{12}^{(1)}\left(E_{12}^{(n)}, E_{12}^{(n)}, E_{12}^{(n)}\right)$, i.e.

$$
\begin{gathered}
E_{12}^{(n+1)}\left(x_{1}, \ldots, x_{3^{n+1}}\right)= \\
E_{12}^{(1)}\left(E_{12}^{(n)}\left(x_{1}, \ldots, x_{3^{n}}\right), E_{12}^{(n)}\left(x_{3^{n}+1}, \ldots, x_{2 \times 3^{n}}\right), E_{12}^{(n)}\left(x_{2 \times 3^{n}+1}, \ldots, x_{3^{n+1}}\right)\right)
\end{gathered}
$$

Definition $2\left(\operatorname{deg}_{\mathbb{F}}(f)\right)$. Let \mathbb{F} be some field. A function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, is represented by a multivariate polynomial $p \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ if

$$
p\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{n}\right)
$$

for every $x_{1} \ldots x_{n} \in\{0,1\}^{n}$ (in the left 0,1 are the additive and multiplicative identities of the field \mathbb{F}).

The degree of f over $\mathbb{F}, \operatorname{deg}_{\mathbb{F}}(f)$, is the smallest degree of any polynomial representing f.

Definition 3 (Sparse set). A set $S \subseteq\{0,1\}^{*}$ is called sparse if it has polynomial density, i.e., if there exists a constant c such that

$$
\left|S \cap\{0,1\}^{n}\right| \leq n^{c}+c .
$$

We use SPARSE to denote the class of all sparse sets.

Hints for the various exercises

Exercise 1. Begin by proving that $\operatorname{deg}_{\mathbb{R}}\left(E_{12}^{(n)}\right) \leq 2^{n}$, and then argue that equality holds based on what you learned of multivariate polynomials.

Exercise 2. Use a sparse set S to encode the advice, and vice versa. Remember to prove the implication clearly in both directions.

Exercise 3. Use a union bound to control the error. For (3b), the union bound must go over all certificates.

Exercise 4. The proof (that we thought of) is through a mix of counting and diagonalization. Note that given an advice string $\alpha_{1} \ldots \alpha_{n}$, it naturally induces a set A of strings of length n, such that the i-th string of length n (in the lexicographical order) is in A iff $\alpha_{i}=1$.

Exercise 5. Note that to any given oblivious exponential-time machine M deciding a set $A \in$ EXP there corresponds a set $B \in$ EXP which encodes the tableau of the computation of M; for instance, we may define B by having $\langle x, t, q, \sigma\rangle \in B$ if and only if the symbol under the tape head is σ, and M is in state q, at the t-th step of the computation of M on input x.

[^0]: ${ }^{1}$ Exercise (3b) is worth 1 bonus point, meaning that the exam is being graded to $5 \times$ $2+1=11$ points. We recommend you do not worry about exercice 3b, and leave it for doing at the end of the exam if you can spare the time.

