Complexity Theory

Final Exam (3h duration)

December 18, 2012

Each exercise is worth 2 points, except for (3b) which is worth 1 point¹. Required definitions and hints for the exercises follow below. Feel free to use the book, or your own notes.

Exercise 1. Prove that the "exact one-two" function $E_{12}^{(n)}$ has degree exactly 2^n over the field \mathbb{R} , i.e., that $\deg_{\mathbb{R}}(E_{12}^{(n)}) = 2^n$.

Exercise 2. Prove that $A \in P/poly$ if and only if $A \in P^{\text{SPARSE}}$.

Exercise 3. (a) Prove that $BPP^{BPP} = BPP$. (b) (bonus) Prove that $NP^{BPP} \subseteq BPP^{NP}$.

Exercise 4. Prove that $P/n^2 \subseteq P/n^3$; then prove that this inclusion is strict.

Exercise 5. Show that if $EXP \subseteq PSPACE/poly$, then EXP = PSPACE

¹Exercise (3b) is worth 1 bonus point, meaning that the exam is being graded to $5 \times 2 + 1 = 11$ points. We recommend you do not worry about exercise 3b, and leave it for doing at the end of the exam if you can spare the time.

Definitions

Definition 1 (Exact one-two function). The "exact one-two" function $E_{12}^{(n)}$ is the boolean function defined inductively by:

(i) $E_{12}^{(1)}(x_1, x_2, x_3) = 1$ if exactly 1 or exactly 2 of the inputs x_1, x_2, x_3 are equal to 1, and $E_{12}^{(1)}(x_1, x_2, x_3) = 0$ otherwise, i.e.,

$$E_{12}^{(1)}(x_1, x_2, x_3) = 1 \iff |\{x_i | x_i = 1, i = 1, 2, 3\}| \in \{1, 2\}.$$

(ii) $E_{12}^{(n+1)} = E_{12}^{(1)}(E_{12}^{(n)}, E_{12}^{(n)}, E_{12}^{(n)})$, i.e.

$$E_{12}^{(n+1)}(x_1,\ldots,x_{3^{n+1}}) =$$

$$E_{12}^{(1)}(E_{12}^{(n)}(x_1,\ldots,x_{3^n}),E_{12}^{(n)}(x_{3^n+1},\ldots,x_{2\times 3^n}),E_{12}^{(n)}(x_{2\times 3^n+1},\ldots,x_{3^{n+1}}))$$

Definition 2 (deg_{\mathbb{F}}(f)). Let \mathbb{F} be some field. A function $f : \{0, 1\}^n \to \{0, 1\}$, is *represented* by a multivariate polynomial $p \in \mathbb{F}[x_1, \ldots, x_n]$ if

$$p(x_1,\ldots,x_n)=f(x_1,\ldots,x_n)$$

for every $x_1 \ldots x_n \in \{0, 1\}^n$ (in the left 0, 1 are the additive and multiplicative identities of the field \mathbb{F}).

The *degree* of f over \mathbb{F} , $\deg_{\mathbb{F}}(f)$, is the smallest degree of any polynomial representing f.

Definition 3 (Sparse set). A set $S \subseteq \{0, 1\}^*$ is called *sparse* if it has polynomial density, i.e., if there exists a constant c such that

$$|S \cap \{0, 1\}^n| \le n^c + c.$$

We use SPARSE to denote the class of all sparse sets.

Hints for the various exercises

- **Exercise 1.** Begin by proving that $\deg_{\mathbb{R}}(E_{12}^{(n)}) \leq 2^n$, and then argue that equality holds based on what you learned of multivariate polynomials.
- **Exercise 2.** Use a sparse set S to encode the advice, and vice versa. Remember to prove the implication clearly in both directions.
- **Exercise 3.** Use a union bound to control the error. For (3b), the union bound must go over all certificates.
- **Exercise 4.** The proof (that we thought of) is through a mix of counting and diagonalization. Note that given an advice string $\alpha_1 \ldots \alpha_{n^c}$, it naturally induces a set A of strings of length n, such that the *i*-th string of length n (in the lexicographical order) is in A iff $\alpha_i = 1$.
- **Exercise 5.** Note that to any given oblivious exponential-time machine M deciding a set $A \in \text{EXP}$ there corresponds a set $B \in \text{EXP}$ which encodes the *tableau* of the computation of M; for instance, we may define B by having $\langle x, t, q, \sigma \rangle \in B$ if and only if the symbol under the tape head is σ , and M is in state q, at the *t*-th step of the computation of M on input x.