Complexity Theory

Homework Sheet 6

(Turn in before the exercise session of Thursday 15 October.)

8 October 2014

Definition 1. Define RP to be the class of languages A for which there is a polytime machine M, and some constant c, such that for all $x \in \{0, 1\}^*$,

$$x \in A \implies \Pr_r[M(x,r)=1] \ge 2/3,$$

 $x \notin A \implies \Pr_r[M(x,r)=0]=1,$

where r is drawn from the uniform distribution over $\{0,1\}^{n^c}$.

Define the complexity class ZPP to be the class of languages A for which there is a polytime machine M which outure either 0, 1 or ?, and some constant c, such that for all $x \in \{0,1\}^*$,

$$\Pr_r[M(x,r)=?] \le 1/2,$$
 if $M(x,r)=1$, then $x \in A$, if $M(x,r)=0$, then $x \notin A$,

where r is drawn from the uniform distribution over $\{0,1\}^{n^c}$.

Exercise 1. Prove the following statements.

- (a) $ZPP = RP \cap coRP$
- (b) $RP \subseteq NP$,
- (c) $RP^{RP} \subseteq BPP$.

Exercise 2. Define BPP/poly. Show that BPP/poly = P/poly.

Exercise 3. Show that in interactive proof systems we gain nothing by allowing the prover to make use of randomness. That is, show that if we have a probabilistic prover P that convinces a verifier V to accept with probability p, where the probability is taken over the random coins of both P and V, then we have a deterministic prover P that convinces V to accept with probability $\geq p$, where the probability is now taken only over the random bits of V.