Complexity Theory

Homework Sheet 5
(Turn in before the exercise session of Thursday 8 Oct.)

1 October 2015

Definition 1. Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be a boolean function. Let \mathbb{F} be a field and let $p \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ be a multivariate polynomial with coefficients in the field \mathbb{F}. The function f is represented by p if

$$
p\left(s_{1}, \ldots, s_{n}\right)=f\left(s_{1}, \ldots, s_{n}\right)
$$

for every $s \in\{0,1\}^{n}$. (For the left side of the equation we take 0 and 1 to be the additive and multiplicative identities of the field \mathbb{F}, respectively.) The degree of f over \mathbb{F}, written $\operatorname{deg}_{\mathbb{F}}(f)$, is the smallest degree of any polynomial in $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ representing f.

A polynomial $p \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ is multilinear if in every monomial of p, every variable x_{i} occurs with power 0 or 1 , that is, p is of the form
with $\alpha_{b} \in \mathbb{F}$.

$$
p=\sum_{b \in\{0,1\}^{n}} \alpha_{b} x_{1}^{b_{1}} x_{2}^{b_{2}} \cdots x_{n}^{b_{n}}
$$

Exercise 1. Let f be a boolean function. Let \mathbb{F} be a field. Show that f can be represented by a multilinear polynomial $p \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, and that such a p is unique.
Exercise 2. Let \oplus_{n} denote the parity function over n bits. What is:
(a) $\operatorname{deg}_{\mathbb{R}}\left(\oplus_{n}\right)$?
(b) $\operatorname{deg}_{\mathbb{F}_{4}}\left(\oplus_{n}\right)$? (Hint: If you don't know what \mathbb{F}_{4} is, read wikipedia on finite fields)

Exercise 3. Show, using polynomials, that the NAND function can not be computed by a circuit consisting only of XOR and NOT gates.
(Hint: What is the degree of XOR over fields you could consider?)
Exercise 4. Given three $n \times n$ matrices A, B, C with real entries, consider the problem of checking whether the product of A and B equals C. That is, to check whether $C_{i j}=\sum_{k=1}^{n} A_{i k} B_{k j}$, for all $i, j \in\{1, \ldots, n\}$. The naïve algorithm would just compute the product $A B$ and compare this to C, but computing it entry by entry takes time $O\left(n^{3}\right)$, and even the fastest known algorithm for matrix multiplication takes $O\left(n^{2.3729}\right)$ steps. ${ }^{1}$ Give a randomized algorithm that solves this problem in time $O\left(n^{2}\right)$, with constant one-sided error.

Hint: Multiply both $A B$ and C with a random $0 / 1$-vector v. Show that having a wrong $C_{i j}$ will always be detected either by v, or by v with entry v_{j} negated.

[^0]
[^0]: ${ }^{1}$ Finding the exact value of the exponent ω in the running time of the fastest matrix multiplication algorithm $O\left(n^{\omega}\right)$ is an open problem - it is known that $2 \leq \omega<2.3729$.

