Complexity Theory

Homework Sheet 4

(Turn in before the exercise session of Thursday 1 Oct.)

24 September 2015

Exercise 1. In this exercise, all graphs are directed graphs. We define the following decision problem:

 $A = \{ \langle G, s, t \rangle \mid \text{The graph } G \text{ contains a vertex } v, \\ \text{not reachable from vertex } s, \text{ such that } t \text{ is reachable from } v. \}$

Show that this problem is contained in NL.

Exercise 2. Define the complexity class

$$DP = \{A \cap B \mid A \in NP, B \in coNP\}.$$

We say an undirected graph G has a *clique* of size k if there exists a subset S of k vertices such that all pairs of vertices in S have an edge between them.

ECLIQUE = { $\langle G, k \rangle$ | the largest clique in the graph G has exactly k vertices}.

(a) Show that ECLIQUE $\in \Sigma_2^p \cap \Pi_2^p$.

(b) Show that $ECLIQUE \in DP$.

(c) Show that if $DP \subseteq NP$, then the polynomial-time hierarchy collapses.

Exercise 3. Define P/log as the class of sets A for which there is an advice function $\alpha : \mathbb{N} \to \{0, 1\}^{O(\log n)}$ and a polytime machine M such that for any string x of length at most $n, x \in A \iff M(x, \alpha(n)) = 1$.

Show that if SAT is in P/log, then P = NP.

Exercise 4. For a set $S \subseteq \{0,1\}^*$, let $S^{\leq n}$ be the strings in S of length at most n. Such a set S is called *sparse* if there is a polynomial p such that the size of $S^{\leq n}$ is at most p(n) for all n. Prove that $P/poly = \{A \mid \text{there is a sparse set } S \text{ such that } A \in P^S\}$.