Complexity Theory

Homework Sheet 1

Turn in before the lecture of Tuesday 8 Sep.

1 September 2015

Exercise 1. Which relations $f \in \bullet(g)$ hold for $\bullet \in \{\mathcal{O}, o, \Omega, \omega, \Theta\}$ for the following pairs of functions? Prove which relations hold and which relations do not hold.

- 1. $f(n) = n^{\log n}$ $g(n) = 2^{(\log n)^3}$.
- 2. f(n) = n! $g(n) = 2^n$.
- 3. $f(n) = \log n$ g(n) = n.
- 4. $f(n) = n^5$ $g(n) = 100n^5$.

Exercise 2. By the fundamental theorem of arithmetic, any natural number x can be uniquely written as a product

$$x = p_1 \cdot p_2 \cdots p_k$$

with p_1, \ldots, p_k prime numbers such that $p_i \leq p_j$ if i < j. This yields a function

 $f: \mathbb{N} \to \{0, 1\}^* : x \mapsto \langle p_1, p_2, \dots, p_k \rangle,$

which maps a natural number x to a binary encoding of the prime factorization of x.

(a) Using the fact that there is a polynomial-time algorithm for testing primality,¹ show that deciding whether z = f(x), when given x and z as input, can be done in polynomial time.

(b) Show that the set

FACTORIZATION = {
$$\langle x, i \rangle$$
 | the *i*-th bit of $f(x)$ is 1}

is in NP.

¹Which has been an open problem for a very long time, but solved in 2002 by Agrawal, Kayal and Saxena, see http://en.wikipedia.org/wiki/AKS_primality_test.

- (c) Show: if FACTORIZATION is NP-complete, then NP = coNP.
- (d) Define

 $COMPOSITE = \{ \langle x \rangle \mid x \in \mathbb{N} \text{ has at least two prime factors} \}.$

Show: COMPOSITE is NP-complete if and only if P = NP.

Exercise 3. Show that $NP \subseteq EXP$.

Hint. Answers will be graded with two criteria: they should be correct and intelligent, but also concise and to the point.