Complexity Theory

Homework Sheet 1
Turn in before the lecture of Tuesday 8 Sep.

1 September 2015

Exercise 1. Which relations $f \in \bullet(g)$ hold for $\bullet \in\{\mathcal{O}, o, \Omega, \omega, \Theta\}$ for the following pairs of functions? Prove which relations hold and which relations do not hold.

1. $f(n)=n^{\log n} \quad g(n)=2^{(\log n)^{3}}$.
2. $f(n)=n!\quad g(n)=2^{n}$.
3. $f(n)=\log n \quad g(n)=n$.
4. $f(n)=n^{5} \quad g(n)=100 n^{5}$.

Exercise 2. By the fundamental theorem of arithmetic, any natural number x can be uniquely written as a product

$$
x=p_{1} \cdot p_{2} \cdots p_{k}
$$

with p_{1}, \ldots, p_{k} prime numbers such that $p_{i} \leq p_{j}$ if $i<j$. This yields a function

$$
f: \mathbb{N} \rightarrow\{0,1\}^{*}: x \mapsto\left\langle p_{1}, p_{2}, \ldots, p_{k}\right\rangle
$$

which maps a natural number x to a binary encoding of the prime factorization of x.
(a) Using the fact that there is a polynomial-time algorithm for testing primality, ${ }^{1}$ show that deciding whether $z=f(x)$, when given x and z as input, can be done in polynomial time.
(b) Show that the set

$$
\text { FACTORIZATION }=\{\langle x, i\rangle \mid \text { the } i \text {-th bit of } f(x) \text { is } 1\}
$$

is in NP.

[^0](c) Show: if FACTORIZATION is NP-complete, then NP $=$ coNP.
(d) Define

COMPOSITE $=\{\langle x\rangle \mid x \in \mathbb{N}$ has at least two prime factors $\}$.
Show: COMPOSITE is NP-complete if and only if $\mathrm{P}=\mathrm{NP}$.
Exercise 3. Show that NP \subseteq EXP.
Hint. Answers will be graded with two criteria: they should be correct and intelligent, but also concise and to the point.

[^0]: ${ }^{1}$ Which has been an open problem for a very long time, but solved in 2002 by Agrawal, Kayal and Saxena, see http://en.wikipedia.org/wiki/AKS_primality_test.

