Exercise session 1

Definition 1. Let f, g be functions $\mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$.

$$
\begin{array}{lll}
f \in \mathcal{O}(g) & \text { means } \quad\left(\exists c, n_{0} \in \mathbb{N}\right)\left(\forall n \geq n_{0}\right)(f(n) \leq c g(n)) \\
f \in o(g) & \text { means } \quad(\forall \varepsilon>0)\left(\exists n_{0} \in \mathbb{N}\right)\left(\forall n \geq n_{0}\right)(f(n)<\varepsilon g(n)) \\
& \text { or equivalently } \quad \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0 \\
f \in \Omega(g) & \text { means } \quad g \in \mathcal{O}(f) \\
f \in \omega(g) & \text { means } & g \in o(f) \\
f \in \theta(g) & \text { means } \quad f \in \mathcal{O}(g) \cap \Omega(g) \tag{=}
\end{array}
$$

Remark 1. It is very common to write $f=\mathcal{O}(g)$ instead of $f \in \mathcal{O}(g)$. Note however that it is not true that $f=\mathcal{O}(g)$ and $h=\mathcal{O}(g)$ implies $f=h$.

Exercise 1.

1. Let $f(n)=p n^{3}+q n^{2}+r n+s$ for some $p, q, r, s \in \mathbb{R}$.

Show $f(n) \in \mathcal{O}\left(n^{3}\right)$ and $f(n) \in o\left(n^{4}\right)$.
2. Show $|\sin n| \in \mathcal{O}(1)$ and $|\sin n| \notin o(1)$.
3. Show $\mathcal{O}(f+g)=\mathcal{O}(\max (f, g))$, where $\max (f, g)$ is the function $x \mapsto \max (f(x), g(x))$.
4. Show $n^{\log n} \in \mathcal{O}\left(2^{n}\right)$.

Solution. 1. (a) Let $c=p+q+r+s$ and $n_{0}=1$, then for $n \geq n_{0}$ we have $p n^{3}+q n^{2}+r n+s \leq c n^{3}$.

1. (b) We have $\lim _{n \rightarrow \infty}\left(p n^{3}+q n^{2}+r n+s\right) / n^{4}=\lim _{n \rightarrow \infty} p / n+q / n^{2}+$ $r / n^{3}+s / n^{4}=0$.
2. (a) Since $0 \leq|\sin (n)| \leq 1$, taking $c=1$ and $n_{0}=0$ works.
3. (b) The limit $\lim _{n \rightarrow \infty}|\sin (n)|$ does not converge.
4. (\subseteq) If $h \in \mathcal{O}(f+g)$ then $\exists c, n_{0} \forall n>n_{0}: h(n) \leq c(f+g)(n)=$ $c(f(n)+g(n)) \leq 2 c \max (f(n), g(n))$.
(\supseteq) If $h \in \mathcal{O}(\max (f, g))$ then $\exists c, n_{0} \forall n>n_{0}: h(n) \leq c \max (f, g)(n) \leq$ $c(f+g)(n)$.
5. Hint: first show that $(\log n)^{2} \leq n$ when $n \geq 1$, and then use that 2^{n} is increasing.
